29/10/2019
The ICN2 research center is involved in the quantum revolution
The ICN2 research center is involved in the quantum revolution
We are living through a quantum revolution based on technologies that use the very little intuitive behavior of matter and light and its interactions at the scale of atoms and photons. Such a behavior is well described by quantum mechanics, a branch a physics born at the beginning of the 20th century.
Two fields are specially impacted by this revolution: communication and computation. Regarding the first one, quantum technology already allows fully secure communications. In computation, things are not so advanced but the uniqueness of the individual behaviors of atoms can allow new ways of computing and thus offer phenomenal powers of calculation, even impossible in a classical way.
In this context, the Catalan government agency for business competitiveness ACCIÓ recently issued a report jointly written with the Institute of Photonic Sciences (ICFO) on the potential of Catalonia in this sector. Among the 6 public research centers pointed out in this document, 3 are on the UAB campus, the key partner of the Barcelona Synchrotron Park: the National Center for Microelectronics (CNM), the Institute of High Energy Physics (IFAE) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2).
Regarding ICN2, the research center recently announced that it has expanded its collaboration with the global network of Microsoft Quantum Labs in furtherance of the goal of developing a scalable quantum computer. The ICN2 laboratories will provide atomic-scale measurements, analysis, and modeling of new materials.
The ICN2 Advanced Electron Nanoscopy Group, led by ICREA Prof. Jordi Arbiol, will provide its expertise in electron microscopy and related spectroscopies to perform measurements and analysis of the complex structure and physical properties of a new kind of nanowires that could be used in quantum computers.
Two fields are specially impacted by this revolution: communication and computation. Regarding the first one, quantum technology already allows fully secure communications. In computation, things are not so advanced but the uniqueness of the individual behaviors of atoms can allow new ways of computing and thus offer phenomenal powers of calculation, even impossible in a classical way.
In this context, the Catalan government agency for business competitiveness ACCIÓ recently issued a report jointly written with the Institute of Photonic Sciences (ICFO) on the potential of Catalonia in this sector. Among the 6 public research centers pointed out in this document, 3 are on the UAB campus, the key partner of the Barcelona Synchrotron Park: the National Center for Microelectronics (CNM), the Institute of High Energy Physics (IFAE) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2).
Regarding ICN2, the research center recently announced that it has expanded its collaboration with the global network of Microsoft Quantum Labs in furtherance of the goal of developing a scalable quantum computer. The ICN2 laboratories will provide atomic-scale measurements, analysis, and modeling of new materials.
The ICN2 Advanced Electron Nanoscopy Group, led by ICREA Prof. Jordi Arbiol, will provide its expertise in electron microscopy and related spectroscopies to perform measurements and analysis of the complex structure and physical properties of a new kind of nanowires that could be used in quantum computers.
More news
30/07/2014
Barcelona among the top 10 cities in the world
24/07/2014
Researchers prove the effectiveness of a new drug against malaria using synchrotron light
17/07/2014
Creation of the Health Technologies Cluster
10/07/2014
An international team of scientists led by researchers from the UAB creates the world's first magnetic hose
03/07/2014
CaixaBank and Oracle set up a Big Data Centre of Excellence in the Barcelona Synchrotron Park
26/06/2014
The Barcelona Supercomputing Center hosts two important new international projects