09/09/2015
The ALBA Synchrotron in the Development of Future Computers
The ALBA Synchrotron in the Development of Future Computers
A team of researchers from the Spanish National Research Council (CSIC) and the ALBA Synchrotron has developed a new method to produce and characterize cobalt ferrite nanostructures with higher quality than ever before. The study, published last month in Advanced Materials, has implications in spintronics, a technology for developing advanced computing systems.
Growth and initial characterization of the islands were performed at the low-energy electron and photoemission electron microscope of the CIRCE beamline at the ALBA Synchrotron. Cobalt and iron atoms were deposited on a substrate at high temperature, while being exposed to oxygen.
Beside, earlier this month, an article about the use of ALBA light in the study of magnetization of buried-covered films was published in Nature Communications: The technology of magnetic storage of digital data has made enormous progress in the last two decades thanks to the scientific advances in nanomagnetism, resulting in the creation of smaller devices with larger capacities and better performances.
A group of scientists from the ALBA Synchrotron, the University of Oviedo, the University of Porto and the National Microelectronics Centre (CNM-CSIC) has carried out a research that sheds light on the magnetic domains in ultrathin magnetic films. Using ALBA's X-ray transmission microscope, the researchers have been able to precisely measure the angles of magnetization of the magnetic domains and to determine how they change when they are buried – covered by other material film.
Image: image of the magnetic domains, Blanco-Roldán et al., see Reference #2
References:
Growth and initial characterization of the islands were performed at the low-energy electron and photoemission electron microscope of the CIRCE beamline at the ALBA Synchrotron. Cobalt and iron atoms were deposited on a substrate at high temperature, while being exposed to oxygen.
Beside, earlier this month, an article about the use of ALBA light in the study of magnetization of buried-covered films was published in Nature Communications: The technology of magnetic storage of digital data has made enormous progress in the last two decades thanks to the scientific advances in nanomagnetism, resulting in the creation of smaller devices with larger capacities and better performances.
A group of scientists from the ALBA Synchrotron, the University of Oviedo, the University of Porto and the National Microelectronics Centre (CNM-CSIC) has carried out a research that sheds light on the magnetic domains in ultrathin magnetic films. Using ALBA's X-ray transmission microscope, the researchers have been able to precisely measure the angles of magnetization of the magnetic domains and to determine how they change when they are buried – covered by other material film.
Image: image of the magnetic domains, Blanco-Roldán et al., see Reference #2
References:
- L. Martín-García, A. Quesada, C. Munuera, J.F. Fernández, M. García-Hernández, M. Foerster, L. Aballe, J. de la Figuera. Atomically flat ultrathin cobalt ferrite islands. Advanced Materials. DOI: 10.1002/adma.201502799
- "Nanoscale Imaging of Buried Topological Defects with Quantitative X-Ray Magnetic Microscopy" C. Blanco-Roldán, C. Quirós, A. Sorrentino, A. Hierro-Rodríguez, L.M. Álvarez-Prado, R. Valcárcel, M. Duch, N. Torras, J. Esteve, J.I.Martín, M. Vélez, J.M. Alameda, E. Pereiro, S. Ferrer Nature Communications DOI: 10.1038/NCOMMS9196
More news
07/05/2014
The new Hewlett-Packard world development center for 3D printers will be in Barcelona
28/04/2014
Loss of memory reversed in Alzheimer's mice models
25/04/2014
More than 30 companies attended the ALBA industry workshop
15/04/2014
European Commission names Barcelona first European Capital of Innovation
11/04/2014
Visit of the Spanish State Secretary for research to the Barcelona Synchrotron Park (BSP)
02/04/2014
High-precision molding in the PTV